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Dielectric response of a polarizable system with quenched disorder
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We present and analyze a lattice model of a disordered dielectric material. In the model, the local polariz-
ability is a quenched statistical variable. Using a reaction field approach, the dielectric response of the model
can be cast in terms of an effective Hamiltonian for a finite primary system coupled to its effective average
medium determined self-consistently. A real space renormalization group analysis is carried out by recursively
increasing the size of the primary system. The analysis determines the length scale dependence of the local
polarizability distribution. For the case of isotropic disorder considered in this paper, we show that the width
of the distribution decays algebraically with increasing lattice spacing. We also compute the distribution of
solvation and reorganization energies pertinent to kinetics of electron transfer.

PACS numbep): 61.20.Gy, 77.22.Gm

[. INTRODUCTION either one of two possible valué¢such as a larger polariz-
ability of the high polarity region of a protein and lower

Polarization fluctuations play a dominant role in thermalpolarizability of the nonpolar region of the protgimhe di-
electron transfer, energy transfer and solvation dynamicslectric behavior of this system is the same as that predicted
Substantial theoretical, computational and experimental efby dielectric continuum theory when the polarizabilities are
forts have been devoted to understand these fluctuations aednstant over the whole latti¢8—11]. Further, when coarse-
the associated dielectric responses. These efforts have estajpained over large enough length scales, we expect that de-
lished a few simple and useful facts. One of the most imporviations from some kind of mean polarizability are negligible
tant is that for polar liquids, the dielectric response to a solin this model. Thus, its macroscopic dielectric behavior is
ute charge distribution change is essentially a linear responskat of dielectric continuum theory. On length scalesafr
[1,2]. Another is that both the static and dynamical consesmall multiples ofa, however, we will see that its behavior
quences of this linear response are well-approximated by ddiffers significantly from this macroscopic limit.
electric continuum theorj3—6]. One might ask if there are We analyze the differences between the microscopic and
implications drawn from these facts that apply to disorderednacroscopic regimes through a renormalization group calcu-
systems that are not entirely liquid. For example, what astation. The essential feature of this calculation, detailed in
pects of dielectric continuum theory can be used when conSec. Ill, is a length scale renormalization of the local polar-
sidering the dielectric response of a glass, a protein, or &ability distribution. Such spatial renormalization group cal-
zeolite? This paper provides a formalism with which thisculations have been used in other quenched disordered mod-
question can be answered, and with which the behaviors dadls with short-ranged interactiof&2]. The renormalization
these disordered or inhomogeneous systems can be modelediuations are derived by employing a reaction field descrip-

We employ quenched statistical distributions to describeion of the coupling of a finite primary system with an effec-
inhomogeneities and disorder. As such, our strategy takestive average medium determined self-consistently. On the
middle ground between dielectric continuum theory and exmicroscopic length scala, the distribution of local polariz-
plicit atomistic modeling. The pictures we draw are thereforeability is simply bimodal, by construction. But as the length
impressionistic caricatures of reality. For example, a particuscale grows, the distribution approaches a narrow Gaussian,
lar protein environment contains specific regions of high powith width that vanishes as an inverse power of the length
larity (aqueous and hydrophili@nd specific regions of low scale. The macroscopic limit corresponds to the limit in
polarity (nonpolar and hydrophobicin the statistical view which the distribution has zero width.
we adopt, we imagine predicting the dielectric behavior of We use the same type of analysis in Sec. IV to study the
that environment as if it is a representative member of anlistribution of solvation and reorganization energies for a
ensemble of environments. The ensemble is characterized hijpolar particle of a given size solvated by this model dielec-
probabilities for where polar or nonpolar patches are locatedric medium. It is found that the reorganization energy is
For example, if we are interested in the ultrafast solvatiordistributed over a range of values and different microenvi-
dynamics in a protein environment the slow conformationalronments of the dipolar particle contribute to the width of
motion of the protein will create such an ensemble. such a distribution.

In general, these distributions could be very complicated. The specific results we establish for this isotropically dis-
For this paper, however, we confine our attention to the simerdered model are of some interest. For example, the pre-
plest of such distributions, one that is bimodal, isotropic, andlicted distribution of reorganization energies implies a spe-
uncorrelated. As described in Sec. Il, we consider a dielectricific and, in principle, measurable nonexponential kinetics
system partitioned on a uniform grid, with grid lines sepa-for electron transfer occurring in real systems that approxi-
rated by a distance, forming a cubic lattice. Each lattice mates the model. More significant, however, is the method-
cell has volume?®, and a local polarizability that can take on ology we establish in this paper. Others before us have con-
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g depicts a particular member of an ensemble of the model
a with a bimodal distribution of polarizabilities, the white lat-
tice cell has a polarizable dipole with a lower polarizability,

a4, and the black cell has a polarizable dipole with a higher

o EE—— polarizability, a,. In this case, the disorder length is given by
—_— the average distance between black cells or between white
cells depending on which color of the cells has the lower
concentration.

e

&

1 HL_ The third length is a solute length. It is the size of the
Al I [T . .
probe molecule used in experimental measuremeénds
Primary System % shown in the figure This third length is relevant since it

specifies the length scale resolved by experiments. We as-
FIG. 1. Schematic illustration of a realization of the disorderedsume that this length is larger than the Gaussian length. An
dielectric (left) and the reduced effective systefmight). The pri-  experimental length scale smaller than the Gaussian length
mary system is marked by a bold cube. The black cells represenyould require a modification of the model we consider in
dipoles with higher polarizability and the white cells represent di-this paper.
poles with lower polarizability. The secondary system cell polariz-  The Hamiltonian of the model can be written as
ability (Z, the gray cells is determined self-consistently as de-

scribed in the text. N m2

1oam o1 2
HZEE a_r_EE mr'Tr,r"mr’- (2)
sidered dielectric properties of a model with disorder, oo rer’

employing an effective medium approximatipt8] or simu- T
lation [14]. A reaction field calculation carried out in Ref. d
[14] indicated the importance of microstructures in the local
field distribution. In previous works, only the local field dis-

tribution was calculated. In this work, the response function (r—r")(r—r") |
of the model is obtained. With this function, one may deter- T(r—r')=3 - ,
mine all of the dielectric properties of the model. In prin- [r—r'|® [r—r'|3

ciple, our treatment is not limited to the case of isotropic

disorder and may be of use for more Comp|ex systems, pefaNherel is the 3x3 |dent|ty matrix. In the discrete case, we

haps even proteins. We turn to the details of our treatmeri#SeT, =T(r—r’) forr=r’, andT, ;=0. The bimodal dis-
now. tribution for «, is assumed to be translationally invariant and
spatially uncorrelated. Specifically

rr+ IS the dipole-dipole interaction tensor for the system
efined on the lattice with spacing In the limit thata
—07, it becomes the familial8,10]

()

Il. THEORETICAL FORMULATION
Pla)=pid(ar—a)+(1-p)dlar—az), (4

For a quenched disordered dielectric, we imagine that i . . o
space is divided into a cubic grid of polarizable cells as pic\Where a polarizable dipole with polarizability, is located
tured in Fig. 1a). There exist three relevant length scales inon @ lattice site with a probabilityp,. More complicated
this model. The first is a Gaussian length that is also thélistributions are left to future analysis.
lattice spacinga. It is the minimum length at which polar-  !f the polarizability is a constant over the whole mate-
ization field follows Gaussian statistics. In other words, infial this model can be solved exact[t1]. For example,
the volume specified by this Gaussian lenatithe polariza- ~ Straightforward matrix mechanics demonstrates that the re-
tion is the result of a large enough number of molecularsPonse functiory, .. is given by
dipoles that this polarization will be close to a Gaussian ran-

dom variable. The polarization of the cellis m, with po- Yoo = va | 1ty P 3y Sy ,} )
larizability «, . Specifically, LCl-yl1+2y T 142y 4 VT
a,=B(m/|?)q, (1)  where the dimensionless polarizabiligy=4map/3, p= 1,

andv=a3 oy is the Kronecker delta. In the continuum
whereg is the usual inverse temperature, gnd- ), denotes  limit a— 0", this result is the familiar dielectric continuum
the thermal average over dipole fluctuations within a latticeformula[9—-11]
cell for the idealized case where these dipoles do not interact

with their surroundings. Interactions with surrounding di- . €—1]2e+1 . e—1 ,
poles renormalize this local polarizability in a fashion dis- x(r=r’)= 4mpel 3 o(r—rl+ Amp Tr=r"|,
cussed below. In general, the polarizability of each cell is (6)

nonlocal in time in this reduced description, but we have
restricted ourselves to the static case in this paper. The gewherta_ 6(r—r') is the Dirac delta_ funct-ion and is th.e di_—.
eralization to dynamical case can be done in a similar fashelectric constant related to the dimensionless polarizalyility

ion as in Ref[11]. through the Clausius-Mossotti equation
The second length is a disorder length, which is the aver-
age distance over which there is a significant change in the e-1 —y )

polarizability defined over the Gaussian length. Figuf@ 1 e+2
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The renormalized local polarizability is given by the full  linearly coupled to the primary system. For this reason, we
thermal average of the squared polarization fluctuations!se the subscript “b” to label the secondary system. Since
within a cell. With constant, it is given by[11] the primary-secondary coupling involves long-ranged elec-
trostatic interactions, the primary system feels an averaged
~ ) (1+y) effect of the secondary system. Therefore, provided a sen-

a=A(m >:a(l—y)(lJr 2y)’ ®  sible criterion for choosinge can be established, we expect

the physical properties computed from this formulation
which is also the dielectric continuum res[11]. should approach the exact properties of the system in the

These connections between dielectric continuum formuldimit of a very large primary subsystem.
and the bilinear Hamiltoniaf®) lead one to identify the case An effective Hamiltonian for the primary system can be
with constant polarizabilitya as the dielectric continuum defined by integrating out the degrees of freedom in the sec-
model. For applications concerned with solvation of micro-ondary systentbath degrees of freedom
scopic entities, this terminology is somewhat a misnomer
since the underlying Hamiltonian makes no physical sense
unless the grid spacing is finite and large enough that,
can obey Gaussian statistics. exf — BHex]=

In contrast to the case whetg is a constant, a spatially f Dmexp(— BHy)
varying polarizability renders the diagonalization of the out
Hamiltonian very difficult if not impossible. To treat the _ _ Al
model with a spatially randomy,, we develop a self- = X BHp)(eXp — BHi) o, (13
consistent theory of an inhomogeneous dielectric using thgnere [ ,Pm denotes the integration over afl, for r not in
conventional dielectric continuum theory as a starting pointthe primary cell, i.e.r ¢ p, and(- - -), means the thermal
To this end, the whole material is divided into two parts. Thegyerage over the bath variables. Since the bath polarization
first part, the primary system, is a finite lattice with the samefie|d is zero in the spatial region of the primary system, the
polarizability distribution and the same lattice spacing as th&tatistics of this average is Gaussian, but with the constraint
original material. The second part, the secondary system, i§f no polarization in the primary system. The result of this
the rest of the lattice with a constant polarizabilityto be  constraint produces the bath response funcﬁ'ﬁ’h [7,11]
determined self-consistently based on the material's polariz- ’
ability distribution. This decomposition into primary and (b) (-1
secondary systems is illustrated in Figb)l The overall di- Xt = X' ™ ”24 Xror (X P prim Xemer . (14)
electric response of the material is the net response of the rrep
combined prir_nary and secpndary subsyst.ems. This treatmepgere,xr . is given by Eq.(5) with a=a (X(p))*l, is non-
captures the inhomogeneity of the material and at the same ' , - T :

. Zero only when botl andr’ are within the primary region,

im nts for the long-range interactions in ielectri . .
tmateeﬁgfou ts for the long-range interactions in a dielect Cand when this condition is met, it denotes thé element of

i i . i ixg, (P)
The Hamiltonian of the net system can be rewritten as e matrix inverse of®; the elements of this matrig, . ,
are nonzero only when bothandr’ are within the primary

f Dmexp(—,BHp—BHb—ﬁHi)
out

H=H,+Hy+H;, (99  region, and when this condition is met, the elements are
given by x, - . With this notation, the result of integrating
where out the bath polarization field is
1o m 1 1 m 1
szi o 2 2 M- Ty My, (10) HeﬁZEZ o 2 2 M- Ty Mg
rep =r r#r'ep rep Qr A0 ep
1 mrz 1 —1 E m,- z T rr'X(b) 'Tw ry o Mer
Hb:_ — - A E mr'Tr r’ mrl y (11) 2 ’ ' "nom nr r”’rm rr e
2 p « 2 e ep ) rrep rr
(15)
and
Substituting Eq(14) into Eq. (15 and using the follow-
ing identity:
Hi:_z 2 M- Ty Mg (12)
Tep’¢p
2 T .- T _4_77 8_77 I__ Trr 16
Here, “p” stands for “primary” system, so that the sums S nr e g g o2 ' (16)

overr e p are sums over lattice sites within the primary sys-

tem. Similarly, sums overe p are sums over the lattice sites the final expression of our effective Hamiltonian is

in the secondary systeni; is the interaction between the

primary system and the secondary system treated as an ef-

fective average mediunta dielectric continuum under the Heff:i E MeAppr-Mpr (17)

continuum limi}, which is specified byTand its lattice spac- neep
ing a. The secondary subsystem plays a role of a “bath”where
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1 3y~{ 8 | The renormalization of the local polarizability is due to
A== =T,/ — — O 11— the coupling of the primary cell to the surrounding secondary
oo © 1+2y[9(1-y) TV system. Since we model the surroundings as an effective
6v_3 homogeneous secondary system with effective local polariz-
+ y —T,, 1 ability y, we can also obtain a renormalized polarizabitity
9(1-y) similar to Eq.(8), namely,
3y - A 2y
_ " " ome moer =1 —1_ 7
o ’”ep4’77(1+2y) rr Dr T r s (18) (a) (a) |m§ (1+V) (23)
877? I 1 The above equation can be derived from E§3) and(22) if
= =0 " =T, (190 the primary system is viewed as a unit cell with lattice spac-
3(1=y) 1=y ing na. Due to the homogeneity of the secondary system,
14y | 3y this dimensionless polarizability is invariant to the choice
Dy =—=8 -+ ————=T, . (20) of grid spacingna, forn=1,2,3....That is, the dimension-
S l-y U Am(l-y) less polarizabilityy is always defined as#a/3(na)®. Equa-

tions (22) and(23) provide a formula for the unrenormalized
In the next secnon we establish a self-consistent criterion fojycg) polarizability tensor,

identifying y=4mpal3. With this criterion, disorder is con-
sidered only as it appears explicitly in the primary system. A L 1
given realization of disorder in the primary system coincides (a') "= ( [32 2 Ar
with a given set ofx, for all r e p, chosen from its distribu- (24)
tion [Eq. (4) being the specific example of the distribution

considered hereinWe employH ¢ with a given realization \ynich depends upon the set ef’s for rep through the

of disorder in the primary system to compute a phySICaInonllnear dependence of ' on these variables. The distri-

property associated with the primary system. This pr0pert3(r>u'[ion of &' is of intererstt/ For example, the distribution

can then be averaged over different realizations of the disor: functlon for the dimensionless average diagonal component
der to determine the predicted observed value for that Props 9 9 P

1 4Ax 2y
+|—3——,
3(na)® (1+vy)

erty. s
’ N ’ Am ’
IIl. RENORMALIZATION TREATMENT py’iny)={ 4y _WTW 3|, (25)
OF THE EFFECTIVE HAMILTONIAN av
A. Self-consistent evaluation of the dielectric response where Tr denotes the trace over Cartesian components of the
for the secondary system tensor and a dimensionless polarizability is defined as

(4m/3(na)®)Tra’/3. a' depends upon these,’s andy
through Eq.(24), and(- - - ),, denotes the average over the
realization of{«,} for r e p,

To construct a self-consistent evaluationyofet us view
the primary system as a single cell with lattice spaairagy
wheren?® is the number of initial cells in the primary system.
The total polarization of this new larger cell is

((--Na= | II [de:P(ap](-- ). (26)
rep
m’ = 2 m, . (21
rep A reasonable criterion for choosing and thusy is to
Then, the renormalized polarizability associated with thishave the average behavior of the primary cell coincide with
new unit cell is that of the secondary system. In particular, the averaged
renormalized polarizability is the same as the renormalized

a B<m m >eff ,82 E <m my. >eff BE Z Arr/- Y,
rep’ep rePr'ep A _(1+_)
(22 7B <Tr2 2 Ar r,> _ y_ y

(---)er denotes the statistical average with Boltzmann 9(na)?| "7 ep , (1=y)(1+2y)

weight exptBHer) . The matrixA, with elements given by

Eq.(18), is determined by the polarizability of the secondaryTh'S association yields the self-consistent equation to be
system and the particular realization of the disordered polarsolved fory. Iterations of these self-consistent equations

izabilites in the primary cells. That is to saye/  converge fairly rapidly. For example, there is typically less
=a' ({a,,rep}, y) For a given realization of disorder in the than 1% drift in the value obtained for after five or six
primary systema is generally a tensor. Due to the isotropic iterations, where iterations are initiated by msertnyg

symmetry of the disorder distribution, however, averaged = (47p/3)[p1as+(1—ps) ] as the value of in the right-
over the different realization of the disorder is diagonal, withhand side of Eq(22). The circles in Fig. 2 show thye from
each of its diagonal elements equal. our self-consistent estimate for different values mf It
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FIG. 2. The self-consistent polarizability as a function of polar- 03 04 05 06 07 08 0.9
izability distributions. The solid line is the effective medium theory, y
wherey=ygy is the physical root to Eq29). The circles are from
our self-consistent calculation based on Ej)). The calculations
are done foly; =0.85,y,=0.13. The primary system has Bells.
The results are obtained by averaging 50 000 realizations.

FIG. 3. The polarizability distribution as a function of primary
system size. The symbols are from calculations based or{25y.
and the lines are fitting to a Gaussian distribution. The circles and
the solid line are for 3 cells. The filled squares and the dotted line

should be noted that the conventional effective mediu are for £ cells. The diamonds and dashed line are focélls. The
r.qtilled triangles and the long-dashed line are féraglls. The calcu-

theory[15] is exactly recovered if the primary system only lations are done foy,=0.85, y,=0.13, andp,=0.5
contains a single original unit cell. In this case, Eg7) e S e

becomes . . . . .
over from bimodal to unimodel is nonuniversal, depending

1 2y -1 1 2y -1 upon both system and property. For instance, the crossover
pl(__ ——) +(1—p1)<—— — length for local polarization field distributior[d4] can be
y Y2 1+y different than that for the local polarizability distribution.
1 The numerically determined distributions graphed in Fig.
3 were obtained by averaging over 50 000 realizations of the
=l=—— (28) . ) .
disordered primary system. Error estimatest shown for
clarity of the figure gradually go from one fifth the size of
where Eg.(23) has been used for the derivation agd the symbols in the peak region to about three times the size
=(4mp/3)a; with i=1 or 2. Simple manipulations of Eq. of the symbols in the wings of the distribution. This figure

(29) yield shows how the bimodal character of the basic cell distribu-
tion, P(«,), becomes unimodal Gaussian-like with a width
yi—y YooY that decreases with increasimg The size of primary cell
1+y—2yy; 1+y—2yy, a 6a

The physical root to Eq29) is identified by the requirement

that y>0. This solution,ygy, coincides with an effective
medium resulf15]. The curve in Fig. 2 is generated from the anm
effective medium theory and agrees with our self-consistent
estimate. Thus, Eq27) can be viewed as a generalized ef- I
fective medium result. A multiunit-cell primary system gives

the same self-consisteﬁas the single unit-cell calculation.
Therefore, the first moment of the distribution functions,

p(y’;n,?), is well-described by the effective medium theory. _ ) o _ )
Furthermore, our approach also gives the full distribution = F!G- 4. Anillustration of a renormalization flow in two dimen-
function of the polarizability. Typical distribution functions, SonS- In the left panel, a particular realization of the primary sys-

P . - . tem with bimodal distributior{black and white cells As in Fig. 1,
p(y';n,y), are illustrated in Fig. 3 for primary cells of a few the gray cells in the secondary system represent the self-consistent

different sizes. For primary cell lengths of2or 3a, the  giglectric continuum. In the right panel, each renormalized cell con-
local polarizability distribution is bimodal, reflecting the bi- gjsts of & original cells in panel A. The new primary system has

modal character of the under lying model. Once the primanyhe same number & of new unit cells as the primary system in the

system size is larger thar? @ells, however, the local polar- |eft panel. The different gray levels of the cells denote a particular
izability distribution is unimodel and very nearly Gaussian.realization of the polarizability distribution calculated from the left

The small length where length scale renormalization crosspanel.
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FIG. 6. The algebraically decay exponent as a functiomof
(Lhe connecting line is a guide to the eye. The samandy, are
used as in Fig. 2.

FIG. 5. The polarizability distribution width as a function of
system size. The symbols are from calculations and the lines a
power law fitting (y,<n"). Thus, the slope’ characterizes the de-
cay of the distribution width. The spherical symbol set is fiar
=0.5 and the square symb0| set imf: 0.8. The same/; andy2 left of Flg 5 has é unit cells with lattice SpaCing and the
are used as in Fig. 2. secondary system is an effective average medium with di-

. N L mensionless polarizabilitﬁ and lattice spacinga. After
where the width of the polarizability distribution becomes renormalization, pictured on the right side of the figure, the

negligible, _indicates the length scale vyhere _the _behavior 0?C'new lattice spacing is® The new primary system still has
the model is that of a homogeneous dielectric with constanés basic cells. as before. but these new basic cells have a

local polarizabilitye. In the next section, we focus on how pasic length six times larger than before. Further, the disor-
this width or dispersion decreases with increasing lengthjer distribution for the new basic renormalized cell is the
scalena. distribution of the primary system before renormalization. In

B. The renormalization calculation of the effective 10'
polarizability distribution

When the primary system size is large, the ma#jx is
large, and it is computationally expensive to find the polar-
izability distribution directly. For example, ii=7, the cal-
culation requires the inversion of a ¥ )*=9261 by 9261
matrix for each realization of the ensemble. 50 000 realiza-
tions are needed to achieve a statistically satisfactory distri-
bution. To circumvent this computational expense, we have
devised a real space renormalization strategy. The strategy is
based upon the observation that the polarizability distribution

function p(y’;n,y) is essentially Gaussian when the length
scale of the primary systema exceeds 4. The distribution
of a larger primary system with length scatena can be
calculated by viewing it as a primary system witi? basic
cells, where now the basic cell lengthrig. The local polar-
izability distribution for this basic cell of length scate is

p(y&;n,?), whereR refers to the position of a basic cell in

the lattice with basic lattice spacinga. In this way, the FIG. 7. The solvation energy distribution of a dipole in a ran-
self-consisteny and the distribution functiop(y’;mn,y) is = dom dielectric material. As the size of our primary system in-
computed from Eqs(25)—(23). In place of P(y,) in those creases, the probability distribution converges to a Gaussian distri-
earlier equations, one now USpsy,’q;n,Y); in place ofr bution. The arrow indicates the value Bf(yen), whereygy is the

e p, one now useR e p’, where p refers to the basic cells effective medium approximation given by the positive root of Eq.
with length scalena that now form the primary cell with (29). The symbols are from calculations based on @B4) and the

] . .= lines are a Gaussian distribution fitting. The circles and the dotted
length scalemn_a, and in place ofp(y’;n,y), one now ob- line are for solute sizea=4. The filled square and the dashed line

tainsp(y’;mn,y). are forn=6. The diamonds and the long-dashed line arenfei8.
This renormalization procedure is illustrated in Fig. 4. In The samey, andy, are used as in Fig. 2 amu =0.5. The size of
three-dimension, the original primary system pictured on thehe dipole is 1.0 D.

P(Ep)(D724%)

Ep(D2A7)
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addition to the effective medium reaction field approxima- To estimate these distributions, we consider a dipole
tion that is inherent to our approach, this renormalizationa cell at origin,r =0, a primary system with length scate
procedure introduces an additional approximation. In parsurrounding the origin, and an effective medium with con-

ticular, the renormalization approach neglects correlations igtant local polarizabilityr surrounding the primary cell. For

disorder between different renormalized basic cells. Whiley particular realization of the random polarizabilities in the
the initial model has no such correlations between differenprimary system cell, the effective Hamiltonian is

original unit cells, by construction, the statistics w§ is 1 1
correlated toy,, for R#R’. Hp== > Mp-App-my—p- > ITTOr
Applying this renormalization method, one may estimate 2 ep ' rep [ (1-y)(1+2y)
the results of calculations for primary systems of essentially —
arbitrary length scale. As the length scale increases, the _ 3y coD o bim
width of the polarizability distribution decreases. The varia- 4m(1+2y) ey Ort = Hr e =t r
tion of this width, y,,, with changing length scalea, is
illustrated in Fig. 5. It is defined as 1 8wy
~Zp. o _
xﬁ:fdy’(éy’)zp(y’;mn?), (30) 2 [3o-y)a+2y)
wheredy’ denotes the deviation gf from its average, i.e., _ 3—y_ Co DY, Co p (31)
the first moment op(y’;mn,y). We see thaj,, decays al- 4m(1+2y) ¢irep T T

gebraically as a function of the primary system size. By fit-
ting the distribution width as a function of the primary sys-
tem sizen with the function formy,,«n”, the decay exponent

v is obtained. Figure 5 shows the decay exponents extract
in this way for primary cells with lengths of the order of
10%a. The exponents vary weakly as a function of probability
p;, remaining close in value te~2.0. A renormalization

group calculation16] predicts thatv=2.0 is the universal

decay exponent in the continuum limit. The weak depen
dence uporp, illustrated in Fig. 6 shows that the continuum
limit is not yet reached for the primary cells with lengths of

wherey has been obtained self-consistently in the absence of
the dipole from Eq.(23). The first term sums the effective

edium averaged interactions between all dipoles in the pri-

ary system excepting the solute dipole at the origin. The
second term adds the effective medium averaged interactions
between the solute dipole and the other polarizable dipoles in
the primary system. The third term is the effective medium
averaged self-energy reaction of the solute dipole. The sol-
Vation energy of the dipolds,,, is given by the usual ratio of
partition functions with and without the solute,

the order of 18a. The fact thaty, decays as a power of f Dm, exp(— BH,)
indicates that there does not exist a correlation length for in
such inhomogeneous dielectrics. The existence of a correla- expl — BEp) = ' (32
tion length would imply that the width of the distribution f Dm, exp(— BHo)
would decay exponentially as a function of primary system n
size. whereHy is the first term in Eq(31), and [;,Dm, denotes
the integration ovem, for r € p, excepting =0. Evaluation
IV. SOLVATION ENERGY OF A DIPOLE IN A RANDOM of the Gaussian integrals yields the solvation eneEgy
DIELECTRIC MATERIAL 1 1
We now turn to the issue of estimating solvation energy S 2P riep [(1—?)(1+2V) Tor
statistics. We consider explicitly solvation energies for di- o
poles in the disordered system. Similar results will follow for 3y _
reorganizati i i iza- - E Co,;-D,, Co
ganization energies, as noted below. For a given realiza Am(1+2y) 5 or" Do gLy
tion of disorder, these quantities have specific values. The rorep
distribution of disorder, however, results in distributions of
values. One experimental consequence of the distributions X (AL, r,,,.|T1-r,,,o
concerns kinetics of electron transfer. According to Marcus'’s ' (1-y)(1+2y)
theory[17], the rate constant for an electron transfer reaction _
ket is given by the energy gap lawkgr~exd—pB8(\ 3y -1
+AG)%4\]. Here,\ is the reorganization energy ands is N 477(1+2?) i Comer-Dpln Corop -P
the thermodynamic driving force. In pat,G is the differ- ’
ence between the reactant and product solvation energies. To 1 [ 8wy
the extent that these quantities are statistically distributed b = —
rather than constant, the observed survival probability for the 3v(1-y)(1+2y)
reactant redox state must be computed by averaging —
exp(—kgrt) over the distributions fok andAG. Such inho- _ 3y _ c..,.D-t.c., p. (33
mogeneous averaging has been used to interpret the nonex- A4m(1+2y) 'y ep Ot Herpr e, '

ponential kinetics observed in the primary electron transfer
of photosynthesig18]. Thus, a theory for the distributions of Similar expressions can be derived for reorganization en-
N andAG can be relevant to experiments. ergies. In this case, however, the expressions involve differ-
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ences between solvation energies at low dielectric responge about three times the size of the symbols in the wings of
frequency and solvatiohl7,19. The former are given by the distribution. In the limit of a very large primary system,
expressions such as E¢B3), involving the random local the distribution will tend to the exact one for this model.
zero frequency polarizability. The latter are also given byJudging from the relative changes in going from 4 to 6 to
such expressions, but involving the local high frequency8, it appears thah=28 is close to the infinite system limit.
electronic polarizability. This high frequency polarizability The &-function distribution, indicated by a vertical line with
will have a far smaller dispersion than the zero frequency@n arrow in Fig. 7, represents a dielectric continuum limit of
polarizability. To a reasonable approximation, therefore, théhe model. In this dielectric continuum limit, the outside di-
dispersion of reorganization energy is about the same size &ectric medium is represented by a dielectric continuum

the dispersion of solvation energy. whose dielectrig is given by our self-consistent calculation.
With Eq. (33), the distribution function forE, is esti- From EQq.(33), the solvation energ¥, can be obtained by
mated as settingr=0 andr” =0. This dielectric continuum prediction

givesE,=3.29 A3 without dispersion. In contrast, the
mearE,), and root mean-square dispersi¢aE,)?)*? pre-

P(Ep) = (A Ep—Ep({ar,rep},y) Dav dicted from then=8 distribution are 4.58 PA 2 and
- 0.39 YA 3, respectively. Thus, inhomogeneity of a dielec-
= 11 [da,P(a,)8[E,—Ep({ay,rephy)]. tric material can indeed significantly affect solvation and re-
repr#0 organization energies.

(34)
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