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Dielectric response of a polarizable system with quenched disorder

Xueyu Song1,2 and David Chandler1
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We present and analyze a lattice model of a disordered dielectric material. In the model, the local polariz-
ability is a quenched statistical variable. Using a reaction field approach, the dielectric response of the model
can be cast in terms of an effective Hamiltonian for a finite primary system coupled to its effective average
medium determined self-consistently. A real space renormalization group analysis is carried out by recursively
increasing the size of the primary system. The analysis determines the length scale dependence of the local
polarizability distribution. For the case of isotropic disorder considered in this paper, we show that the width
of the distribution decays algebraically with increasing lattice spacing. We also compute the distribution of
solvation and reorganization energies pertinent to kinetics of electron transfer.

PACS number~s!: 61.20.Gy, 77.22.Gm
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I. INTRODUCTION

Polarization fluctuations play a dominant role in therm
electron transfer, energy transfer and solvation dynam
Substantial theoretical, computational and experimental
forts have been devoted to understand these fluctuations
the associated dielectric responses. These efforts have e
lished a few simple and useful facts. One of the most imp
tant is that for polar liquids, the dielectric response to a s
ute charge distribution change is essentially a linear respo
@1,2#. Another is that both the static and dynamical con
quences of this linear response are well-approximated by
electric continuum theory@3–6#. One might ask if there are
implications drawn from these facts that apply to disorde
systems that are not entirely liquid. For example, what
pects of dielectric continuum theory can be used when c
sidering the dielectric response of a glass, a protein, o
zeolite? This paper provides a formalism with which th
question can be answered, and with which the behavior
these disordered or inhomogeneous systems can be mod

We employ quenched statistical distributions to descr
inhomogeneities and disorder. As such, our strategy tak
middle ground between dielectric continuum theory and
plicit atomistic modeling. The pictures we draw are therefo
impressionistic caricatures of reality. For example, a parti
lar protein environment contains specific regions of high
larity ~aqueous and hydrophilic! and specific regions of low
polarity ~nonpolar and hydrophobic!. In the statistical view
we adopt, we imagine predicting the dielectric behavior
that environment as if it is a representative member of
ensemble of environments. The ensemble is characterize
probabilities for where polar or nonpolar patches are loca
For example, if we are interested in the ultrafast solvat
dynamics in a protein environment the slow conformatio
motion of the protein will create such an ensemble.

In general, these distributions could be very complicat
For this paper, however, we confine our attention to the s
plest of such distributions, one that is bimodal, isotropic, a
uncorrelated. As described in Sec. II, we consider a dielec
system partitioned on a uniform grid, with grid lines sep
rated by a distancea, forming a cubic lattice. Each lattic
cell has volumea3, and a local polarizability that can take o
PRE 621063-651X/2000/62~6!/7949~8!/$15.00
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either one of two possible values~such as a larger polariz
ability of the high polarity region of a protein and lowe
polarizability of the nonpolar region of the protein!. The di-
electric behavior of this system is the same as that predi
by dielectric continuum theory when the polarizabilities a
constant over the whole lattice@8–11#. Further, when coarse
grained over large enough length scales, we expect that
viations from some kind of mean polarizability are negligib
in this model. Thus, its macroscopic dielectric behavior
that of dielectric continuum theory. On length scales ofa or
small multiples ofa, however, we will see that its behavio
differs significantly from this macroscopic limit.

We analyze the differences between the microscopic
macroscopic regimes through a renormalization group ca
lation. The essential feature of this calculation, detailed
Sec. III, is a length scale renormalization of the local pol
izability distribution. Such spatial renormalization group ca
culations have been used in other quenched disordered m
els with short-ranged interactions@12#. The renormalization
equations are derived by employing a reaction field desc
tion of the coupling of a finite primary system with an effe
tive average medium determined self-consistently. On
microscopic length scalea, the distribution of local polariz-
ability is simply bimodal, by construction. But as the leng
scale grows, the distribution approaches a narrow Gauss
with width that vanishes as an inverse power of the len
scale. The macroscopic limit corresponds to the limit
which the distribution has zero width.

We use the same type of analysis in Sec. IV to study
distribution of solvation and reorganization energies for
dipolar particle of a given size solvated by this model diele
tric medium. It is found that the reorganization energy
distributed over a range of values and different microen
ronments of the dipolar particle contribute to the width
such a distribution.

The specific results we establish for this isotropically d
ordered model are of some interest. For example, the
dicted distribution of reorganization energies implies a s
cific and, in principle, measurable nonexponential kinet
for electron transfer occurring in real systems that appro
mates the model. More significant, however, is the meth
ology we establish in this paper. Others before us have c
7949 ©2000 The American Physical Society
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7950 PRE 62XUEYU SONG AND DAVID CHANDLER
sidered dielectric properties of a model with disord
employing an effective medium approximation@13# or simu-
lation @14#. A reaction field calculation carried out in Re
@14# indicated the importance of microstructures in the lo
field distribution. In previous works, only the local field di
tribution was calculated. In this work, the response funct
of the model is obtained. With this function, one may det
mine all of the dielectric properties of the model. In pri
ciple, our treatment is not limited to the case of isotrop
disorder and may be of use for more complex systems,
haps even proteins. We turn to the details of our treatm
now.

II. THEORETICAL FORMULATION

For a quenched disordered dielectric, we imagine t
space is divided into a cubic grid of polarizable cells as p
tured in Fig. 1~a!. There exist three relevant length scales
this model. The first is a Gaussian length that is also
lattice spacing,a. It is the minimum length at which polar
ization field follows Gaussian statistics. In other words,
the volume specified by this Gaussian lengtha, the polariza-
tion is the result of a large enough number of molecu
dipoles that this polarization will be close to a Gaussian r
dom variable. The polarization of the cellr is mr with po-
larizability a r . Specifically,

a r5b^umru2&0 , ~1!

whereb is the usual inverse temperature, and^•••&0 denotes
the thermal average over dipole fluctuations within a latt
cell for the idealized case where these dipoles do not inte
with their surroundings. Interactions with surrounding d
poles renormalize this local polarizability in a fashion d
cussed below. In general, the polarizability of each cel
nonlocal in time in this reduced description, but we ha
restricted ourselves to the static case in this paper. The
eralization to dynamical case can be done in a similar fa
ion as in Ref.@11#.

The second length is a disorder length, which is the av
age distance over which there is a significant change in
polarizability defined over the Gaussian length. Figure 1~a!

FIG. 1. Schematic illustration of a realization of the disorder
dielectric ~left! and the reduced effective system~right!. The pri-
mary system is marked by a bold cube. The black cells repre
dipoles with higher polarizability and the white cells represent
poles with lower polarizability. The secondary system cell polar

ability (ā, the gray cells! is determined self-consistently as d
scribed in the text.
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depicts a particular member of an ensemble of the mo
with a bimodal distribution of polarizabilities, the white la
tice cell has a polarizable dipole with a lower polarizabilit
a1, and the black cell has a polarizable dipole with a high
polarizability,a2. In this case, the disorder length is given b
the average distance between black cells or between w
cells depending on which color of the cells has the low
concentration.

The third length is a solute length. It is the size of t
probe molecule used in experimental measurements~not
shown in the figure!. This third length is relevant since i
specifies the length scale resolved by experiments. We
sume that this length is larger than the Gaussian length.
experimental length scale smaller than the Gaussian le
would require a modification of the model we consider
this paper.

The Hamiltonian of the model can be written as

H5
1

2 (
r

N mr
2

a r
2

1

2 (
rÞr8

N

mr•Tr ,r8•mr8 . ~2!

Tr ,r8 is the dipole-dipole interaction tensor for the syste
defined on the lattice with spacinga. In the limit that a
→01, it becomes the familiar@8,10#

T~r2r 8!53
~r2r 8!~r2r 8!

ur2r 8u5
2

I

ur2r 8u3
, ~3!

whereI is the 333 identity matrix. In the discrete case, w
useTr ,r85T(r2r 8) for rÞr 8, andTr ,r50. The bimodal dis-
tribution for a r is assumed to be translationally invariant a
spatially uncorrelated. Specifically

P~a r !5p1d~a r2a1!1~12p1!d~a r2a2!, ~4!

where a polarizable dipole with polarizabilitya1 is located
on a lattice site with a probabilityp1. More complicated
distributions are left to future analysis.

If the polarizability is a constanta over the whole mate-
rial this model can be solved exactly@11#. For example,
straightforward matrix mechanics demonstrates that the
sponse functionx r ,r8 is given by

x r ,r85
va

12y F 11y

112y
d r ,r8I1

3y

112y

v
4p

Tr ,r8G , ~5!

where the dimensionless polarizabilityy54par/3, r51/v,
and v5a3; d r ,r8 is the Kronecker delta. In the continuum
limit a→01, this result is the familiar dielectric continuum
formula @9–11#

x~r2r 8!5
e21

4preF2e11

3
d~r2r 8!I1

e21

4pr
T~r2r 8!G ,

~6!

whered(r2r 8) is the Dirac delta function ande is the di-
electric constant related to the dimensionless polarizability
through the Clausius-Mossotti equation

e21

e12
5y. ~7!
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PRE 62 7951DIELECTRIC RESPONSE OF A POLARIZABLE SYSTEM . . .
The renormalized local polarizabilityã is given by the full
thermal average of the squared polarization fluctuati
within a cell. With constanta, it is given by@11#

ã5b^umru2&5a
~11y!

~12y!~112y!
, ~8!

which is also the dielectric continuum result@9,11#.
These connections between dielectric continuum form

and the bilinear Hamiltonian~2! lead one to identify the cas
with constant polarizabilitya as the dielectric continuum
model. For applications concerned with solvation of mic
scopic entities, this terminology is somewhat a misnom
since the underlying Hamiltonian makes no physical se
unless the grid spacinga is finite and large enough thatmr
can obey Gaussian statistics.

In contrast to the case wherea r is a constant, a spatially
varying polarizability renders the diagonalization of t
Hamiltonian very difficult if not impossible. To treat th
model with a spatially randoma r , we develop a self-
consistent theory of an inhomogeneous dielectric using
conventional dielectric continuum theory as a starting po
To this end, the whole material is divided into two parts. T
first part, the primary system, is a finite lattice with the sa
polarizability distribution and the same lattice spacing as
original material. The second part, the secondary system
the rest of the lattice with a constant polarizabilityā to be
determined self-consistently based on the material’s pola
ability distribution. This decomposition into primary an
secondary systems is illustrated in Fig. 1~b!. The overall di-
electric response of the material is the net response of
combined primary and secondary subsystems. This treatm
captures the inhomogeneity of the material and at the s
time accounts for the long-range interactions in a dielec
material.

The Hamiltonian of the net system can be rewritten as

H5Hp1Hb1H i , ~9!

where

Hp5
1

2 (
rPp

mr
2

a r
2

1

2 (
rÞr8Pp

mr•Tr ,r8•mr8 , ~10!

Hb5
1

2 (
r¹p

mr
2

ā
2

1

2 (
rÞr8¹p

mr•Tr ,r8•mr8 , ~11!

and

H i52(
rPp

(
r8¹p

mr•Tr ,r8•mr8 . ~12!

Here, ‘‘p’’ stands for ‘‘primary’’ system, so that the sum
over rPp are sums over lattice sites within the primary sy
tem. Similarly, sums overr¹p are sums over the lattice site
in the secondary system.H i is the interaction between th
primary system and the secondary system treated as a
fective average medium~a dielectric continuum under th
continuum limit!, which is specified byā and its lattice spac-
ing a. The secondary subsystem plays a role of a ‘‘bat
s
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linearly coupled to the primary system. For this reason,
use the subscript ‘‘b’’ to label the secondary system. Sin
the primary-secondary coupling involves long-ranged el
trostatic interactions, the primary system feels an avera
effect of the secondary system. Therefore, provided a s
sible criterion for choosingā can be established, we expe
the physical properties computed from this formulati
should approach the exact properties of the system in
limit of a very large primary subsystem.

An effective Hamiltonian for the primary system can b
defined by integrating out the degrees of freedom in the s
ondary system~bath degrees of freedom!,

exp@2bHeff#5

E
out

Dm exp~2bHp2bHb2bH i!

E
out

Dm exp~2bHb!

5exp~2bHp!^exp~2bH i!&b , ~13!

where*outDm denotes the integration over allmr for r not in
the primary cell, i.e.,r¹p, and ^•••&b means the therma
average over the bath variables. Since the bath polariza
field is zero in the spatial region of the primary system, t
statistics of this average is Gaussian, but with the constr
of no polarization in the primary system. The result of th
constraint produces the bath response functionx r ,r8

(b) @7,11#

x r ,r8
(b)

5x r ,r82 (
r9,r-Pp

x r ,r9•~x (p)!r9,r-
21

•x r-,r8 . ~14!

Here,x r ,r8 is given by Eq.~5! with a5ā; (x (p)) r ,r8
21 is non-

zero only when bothr andr 8 are within the primary region,
and when this condition is met, it denotes therr 8 element of
the matrix inverse ofx(p); the elements of this matrix,x r ,r8

(p) ,
are nonzero only when bothr andr 8 are within the primary
region, and when this condition is met, the elements
given by x r ,r8 . With this notation, the result of integratin
out the bath polarization field is

Heff5
1

2 (
rPp

mr
2

a r
2

1

2 (
rÞr8Pp

mr•Tr ,r8•mr8

2
1

2 (
r ,r8Pp

mr•H (
r9,r-

Tr ,r9•x r9,r-
(b)

•Tr-,r8J •mr8 .

~15!

Substituting Eq.~14! into Eq. ~15! and using the follow-
ing identity:

(
r9

Tr ,r9•Tr9,r85
4p

3 F8p

3
d r ,r8

I

v2
2

Tr ,r8
v G , ~16!

the final expression of our effective Hamiltonian is

Heff5
1

2 (
r ,r8Pp

mr•Ar ,r8•mr8 , ~17!

where
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7952 PRE 62XUEYU SONG AND DAVID CHANDLER
Ar ,r85
1

a r
d r ,r8I2Tr ,r82

3ȳ

112ȳ
F 8p

9~12 ȳ!
d r ,r8

I

v

1
6ȳ23

9~12 ȳ!
Tr ,r8G

1 (
r9,r-Pp

3ȳ

4p~112ȳ!
Cr ,r9•Dr9,r-

21
•Cr-,r8 ; ~18!

Cr ,r85
8p ȳ

3~12 ȳ!
d r ,r8

I

v
1

1

12 ȳ
Tr ,r8 , ~19!

Dr ,r85
11 ȳ

12 ȳ
d r ,r8

I

v
1

3ȳ

4p~12 ȳ!
Tr ,r8 . ~20!

In the next section, we establish a self-consistent criterion
identifying ȳ54prā/3. With this criterion, disorder is con
sidered only as it appears explicitly in the primary system
given realization of disorder in the primary system coincid
with a given set ofa r for all rPp, chosen from its distribu-
tion @Eq. ~4! being the specific example of the distributio
considered herein#. We employHeff with a given realization
of disorder in the primary system to compute a physi
property associated with the primary system. This prope
can then be averaged over different realizations of the di
der to determine the predicted observed value for that p
erty.

III. RENORMALIZATION TREATMENT
OF THE EFFECTIVE HAMILTONIAN

A. Self-consistent evaluation of the dielectric response
for the secondary system

To construct a self-consistent evaluation ofȳ, let us view
the primary system as a single cell with lattice spacingna,
wheren3 is the number of initial cells in the primary system
The total polarization of this new larger cell is

m85(
rPp

mr . ~21!

Then, the renormalized polarizability associated with t
new unit cell is

ã85b^m8m8&eff5b(
rPp

(
r8Pp

^mrmr8&eff5b(
rPp

(
r8Pp

Ar ,r8
21 .

~22!

^•••&eff denotes the statistical average with Boltzma
weight exp(2bHeff). The matrixA, with elements given by
Eq. ~18!, is determined by the polarizability of the seconda
system and the particular realization of the disordered po
izabilities in the primary cells. That is to say,ã8

5ã8($a r ,rPp%,ȳ). For a given realization of disorder in th
primary system,ã8 is generally a tensor. Due to the isotrop
symmetry of the disorder distribution, however,ã8 averaged
over the different realization of the disorder is diagonal, w
each of its diagonal elements equal.
r

s

l
ty
r-
p-

s

r-

The renormalization of the local polarizability is due
the coupling of the primary cell to the surrounding second
system. Since we model the surroundings as an effec
homogeneous secondary system with effective local pola
ability ȳ, we can also obtain a renormalized polarizabilityã8
similar to Eq.~8!, namely,

~ã8!215~a8!212I
4p

3~na!3

2ȳ

~11 ȳ!
. ~23!

The above equation can be derived from Eqs.~17! and~22! if
the primary system is viewed as a unit cell with lattice sp
ing na. Due to the homogeneity of the secondary syste
this dimensionless polarizabilityȳ is invariant to the choice
of grid spacingna, for n51,2,3. . . . That is, the dimension-
less polarizabilityy is always defined as 4pa/3(na)3. Equa-
tions ~22! and~23! provide a formula for the unrenormalize
local polarizability tensor,

~a8!215S b(
rPp

(
r8Pp

Ar ,r8
21 D 21

1I
4p

3~na!3

2ȳ

~11 ȳ!
,

~24!

which depends upon the set ofa r ’s for rPp through the
nonlinear dependence ofAr ,r8

21 on these variables. The distr
bution of a8 is of interest. For example, the distributio
function for the dimensionless average diagonal compon
of a8 is

p~y8;n,ȳ!5 K dFy82
4p

3~na!3Tr a8/3G L
av

, ~25!

where Tr denotes the trace over Cartesian components o
tensor and a dimensionless polarizabilityy8 is defined as
„4p/3(na)3

…Tr a8/3. a8 depends upon thesea r ’s and ȳ
through Eq.~24!, and ^•••&av denotes the average over th
realization of$a r% for rPp,

^~••• !&av5E )
rPp

@da rP~a r !#~••• !. ~26!

A reasonable criterion for choosingā and thusȳ is to
have the average behavior of the primary cell coincide w
that of the secondary system. In particular, the avera
renormalized polarizability is the same as the renormali
ȳ,

4pb

9~na!3 K Tr(
rPp

(
r8Pp

Ar ,r8
21 L

av

5
ȳ~11 ȳ!

~12 ȳ!~112ȳ!
. ~27!

This association yields the self-consistent equation to
solved for ȳ. Iterations of these self-consistent equatio
converge fairly rapidly. For example, there is typically le
than 1% drift in the value obtained forȳ after five or six
iterations, where iterations are initiated by insertingȳ0

5(4pr/3)@p1a11(12p1)a2# as the value ofȳ in the right-
hand side of Eq.~22!. The circles in Fig. 2 show theȳ from
our self-consistent estimate for different values ofp1. It
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PRE 62 7953DIELECTRIC RESPONSE OF A POLARIZABLE SYSTEM . . .
should be noted that the conventional effective medi
theory @15# is exactly recovered if the primary system on
contains a single original unit cell. In this case, Eq.~27!
becomes

p1S 1

y1
2

2ȳ

11 ȳ
D 21

1~12p1!S 1

y2
2

2ȳ

11 ȳ
D 21

5S 1

ȳ
2

2ȳ

11 ȳ
D 21

, ~28!

where Eq. ~23! has been used for the derivation andyi
5(4pr/3)a i with i 51 or 2. Simple manipulations of Eq
~28! yield

p1

y12 ȳ

11 ȳ22ȳy1

1~12p1!
y22 ȳ

11 ȳ22ȳy2

50. ~29!

The physical root to Eq.~29! is identified by the requiremen
that ȳ.0. This solution,ȳEM , coincides with an effective
medium result@15#. The curve in Fig. 2 is generated from th
effective medium theory and agrees with our self-consis
estimate. Thus, Eq.~27! can be viewed as a generalized e
fective medium result. A multiunit-cell primary system give
the same self-consistentȳ as the single unit-cell calculation
Therefore, the first moment of the distribution function
p(y8;n,ȳ), is well-described by the effective medium theor
Furthermore, our approach also gives the full distribut
function of the polarizability. Typical distribution functions
p(y8;n,ȳ), are illustrated in Fig. 3 for primary cells of a few
different sizes. For primary cell lengths of 2a or 3a, the
local polarizability distribution is bimodal, reflecting the b
modal character of the under lying model. Once the prim
system size is larger than 63 cells, however, the local polar
izability distribution is unimodel and very nearly Gaussia
The small length where length scale renormalization cro

FIG. 2. The self-consistent polarizability as a function of pol
izability distributions. The solid line is the effective medium theo

whereȳ5 ȳEM is the physical root to Eq.~29!. The circles are from
our self-consistent calculation based on Eq.~27!. The calculations
are done fory150.85, y250.13. The primary system has 53 cells.
The results are obtained by averaging 50 000 realizations.
nt

,

n

y

.
s-

over from bimodal to unimodel is nonuniversal, dependi
upon both system and property. For instance, the cross
length for local polarization field distributions@14# can be
different than that for the local polarizability distribution.

The numerically determined distributions graphed in F
3 were obtained by averaging over 50 000 realizations of
disordered primary system. Error estimates~not shown for
clarity of the figure! gradually go from one fifth the size o
the symbols in the peak region to about three times the
of the symbols in the wings of the distribution. This figu
shows how the bimodal character of the basic cell distri
tion, P(a r), becomes unimodal Gaussian-like with a wid
that decreases with increasingn. The size of primary cell

FIG. 4. An illustration of a renormalization flow in two dimen
sions. In the left panel, a particular realization of the primary s
tem with bimodal distribution~black and white cells!. As in Fig. 1,
the gray cells in the secondary system represent the self-consi
dielectric continuum. In the right panel, each renormalized cell c
sists of 62 original cells in panel A. The new primary system h
the same number (62) of new unit cells as the primary system in th
left panel. The different gray levels of the cells denote a particu
realization of the polarizability distribution calculated from the le
panel.

-

FIG. 3. The polarizability distribution as a function of primar
system size. The symbols are from calculations based on Eq.~25!
and the lines are fitting to a Gaussian distribution. The circles
the solid line are for 33 cells. The filled squares and the dotted lin
are for 43 cells. The diamonds and dashed line are for 53 cells. The
filled triangles and the long-dashed line are for 63 cells. The calcu-
lations are done fory150.85, y250.13, andp150.5.
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7954 PRE 62XUEYU SONG AND DAVID CHANDLER
where the width of the polarizability distribution becom
negligible, indicates the length scale where the behavio
the model is that of a homogeneous dielectric with cons
local polarizabilityā. In the next section, we focus on ho
this width or dispersion decreases with increasing len
scalena.

B. The renormalization calculation of the effective
polarizability distribution

When the primary system size is large, the matrixAr ,r8 is
large, and it is computationally expensive to find the pol
izability distribution directly. For example, ifn57, the cal-
culation requires the inversion of a (337)359261 by 9261
matrix for each realization of the ensemble. 50 000 reali
tions are needed to achieve a statistically satisfactory di
bution. To circumvent this computational expense, we h
devised a real space renormalization strategy. The strate
based upon the observation that the polarizability distribut
function p(y8;n,ȳ) is essentially Gaussian when the leng
scale of the primary systemna exceeds 4a. The distribution
of a larger primary system with length scalemna can be
calculated by viewing it as a primary system withm3 basic
cells, where now the basic cell length isna. The local polar-
izability distribution for this basic cell of length scalena is
p(yR8 ;n,ȳ), whereR refers to the position of a basic cell i
the lattice with basic lattice spacingna. In this way, the
self-consistentȳ and the distribution functionp(y8;mn,ȳ) is
computed from Eqs.~25!–~23!. In place ofP(yr) in those
earlier equations, one now usesp(yR8 ;n,ȳ); in place of r
Pp, one now usesRPp8, where p8 refers to the basic cells
with length scalena that now form the primary cell with
length scalemna; and in place ofp(y8;n,ȳ), one now ob-
tainsp(y8;mn,ȳ).

This renormalization procedure is illustrated in Fig. 4.
three-dimension, the original primary system pictured on

FIG. 5. The polarizability distribution width as a function o
system size. The symbols are from calculations and the lines
power law fitting (xn}nn). Thus, the slopen characterizes the de
cay of the distribution width. The spherical symbol set is forp1

50.5 and the square symbol set forp150.8. The samey1 and y2

are used as in Fig. 2.
of
nt
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-
ri-
e
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n

e

left of Fig. 5 has 63 unit cells with lattice spacinga and the
secondary system is an effective average medium with
mensionless polarizabilityȳ and lattice spacinga. After
renormalization, pictured on the right side of the figure, t
new lattice spacing is 6a. The new primary system still ha
63 basic cells, as before, but these new basic cells hav
basic length six times larger than before. Further, the dis
der distribution for the new basic renormalized cell is t
distribution of the primary system before renormalization.

re

FIG. 6. The algebraically decay exponent as a function ofp1.
The connecting line is a guide to the eye. The samey1 andy2 are
used as in Fig. 2.

FIG. 7. The solvation energy distribution of a dipole in a ra
dom dielectric material. As the size of our primary system
creases, the probability distribution converges to a Gaussian d

bution. The arrow indicates the value ofEp( ȳEM), whereȳEM is the
effective medium approximation given by the positive root of E
~29!. The symbols are from calculations based on Eq.~34! and the
lines are a Gaussian distribution fitting. The circles and the do
line are for solute sizen54. The filled square and the dashed lin
are forn56. The diamonds and the long-dashed line are forn58.
The samey1 andy2 are used as in Fig. 2 andp150.5. The size of
the dipole is 1.0 D.
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addition to the effective medium reaction field approxim
tion that is inherent to our approach, this renormalizat
procedure introduces an additional approximation. In p
ticular, the renormalization approach neglects correlation
disorder between different renormalized basic cells. Wh
the initial model has no such correlations between differ
original unit cells, by construction, the statistics ofyR8 is
correlated toyR8

8 for RÞR8.
Applying this renormalization method, one may estima

the results of calculations for primary systems of essenti
arbitrary length scale. As the length scale increases,
width of the polarizability distribution decreases. The var
tion of this width, xn , with changing length scalena, is
illustrated in Fig. 5. It is defined as

xn
25E dy8~dy8!2p~y8;mn,ȳ!, ~30!

wheredy8 denotes the deviation ofy8 from its average, i.e.
the first moment ofp(y8;mn,ȳ). We see thatxn decays al-
gebraically as a function of the primary system size. By
ting the distribution width as a function of the primary sy
tem sizen with the function formxn}nn, the decay exponen
n is obtained. Figure 5 shows the decay exponents extra
in this way for primary cells with lengths of the order o
102a. The exponents vary weakly as a function of probabil
p1, remaining close in value ton'2.0. A renormalization
group calculation@16# predicts thatn52.0 is the universal
decay exponent in the continuum limit. The weak dep
dence uponp1 illustrated in Fig. 6 shows that the continuu
limit is not yet reached for the primary cells with lengths
the order of 102a. The fact thatxn decays as a power ofn
indicates that there does not exist a correlation length
such inhomogeneous dielectrics. The existence of a corr
tion length would imply that the width of the distributio
would decay exponentially as a function of primary syst
size.

IV. SOLVATION ENERGY OF A DIPOLE IN A RANDOM
DIELECTRIC MATERIAL

We now turn to the issue of estimating solvation ene
statistics. We consider explicitly solvation energies for
poles in the disordered system. Similar results will follow f
reorganization energies, as noted below. For a given rea
tion of disorder, these quantities have specific values.
distribution of disorder, however, results in distributions
values. One experimental consequence of the distribut
concerns kinetics of electron transfer. According to Marcu
theory@17#, the rate constant for an electron transfer react
kET is given by the energy gap law,kET;exp@2b(l
1DG)2/4l#. Here,l is the reorganization energy andDG is
the thermodynamic driving force. In part,DG is the differ-
ence between the reactant and product solvation energie
the extent that these quantities are statistically distribu
rather than constant, the observed survival probability for
reactant redox state must be computed by averag
exp(2kETt) over the distributions forl andDG. Such inho-
mogeneous averaging has been used to interpret the no
ponential kinetics observed in the primary electron trans
of photosynthesis@18#. Thus, a theory for the distributions o
l andDG can be relevant to experiments.
-
n
r-
in
e
t

e
ly
e

-

-

ed

-

r
la-

y
-

a-
e

f
ns
s
n

To
d
e
g

ex-
r

To estimate these distributions, we consider a dipolep in
a cell at origin,r50, a primary system with length scalena
surrounding the origin, and an effective medium with co
stant local polarizabilityā surrounding the primary cell. Fo
a particular realization of the random polarizabilities in t
primary system cell, the effective Hamiltonian is

Hp5
1

2 (
r ,r8Pp

mr•Ar ,r8•mr82p•(
rPp

H 1

~12 ȳ!~112ȳ!
T0,r

2
3ȳ

4p~112ȳ!
(

r8,r9Pp

C0,r8•Dr8,r9
21

•Cr9,rJ •mr

2
1

2
p•H 8p ȳ

3v~12 ȳ!~112ȳ!
I

2
3ȳ

4p~112ȳ!
(

r8,r9Pp

C0,r8•Dr8,r9
21

•Cr9,rJ •p, ~31!

whereȳ has been obtained self-consistently in the absenc
the dipole from Eq.~23!. The first term sums the effectiv
medium averaged interactions between all dipoles in the
mary system excepting the solute dipole at the origin. T
second term adds the effective medium averaged interact
between the solute dipole and the other polarizable dipole
the primary system. The third term is the effective mediu
averaged self-energy reaction of the solute dipole. The
vation energy of the dipole,Ep , is given by the usual ratio o
partition functions with and without the solute,

exp~2bEp!5

E
in
Dmr exp~2bHp!

E
in
Dmr exp~2bH0!

, ~32!

whereH0 is the first term in Eq.~31!, and* inDmr denotes
the integration overmr for rPp, exceptingr50. Evaluation
of the Gaussian integrals yields the solvation energyEp ,

Ep52
1

2
p• (

r ,r-Pp
H 1

~12 ȳ!~112ȳ!
T0,r

2
3ȳ

4p~112ȳ!
(

r8,r9Pp

C0,r8•Dr8,r9
21

•Cr9,rJ
3~A21!r ,r-•H 1

~12 ȳ!~112ȳ!
Tr-,0

2
3ȳ

4p~112ȳ!
(

r8,r9Pp

Cr-,r8•Dr8,r9
21

•Cr9,0J •p

2
1

2
p•H 8p ȳ

3v~12 ȳ!~112ȳ!
I

2
3ȳ

4p~112ȳ!
(

r8,r9Pp

C0,r8•Dr8,r9
21

•Cr9,rJ •p. ~33!

Similar expressions can be derived for reorganization
ergies. In this case, however, the expressions involve dif
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ences between solvation energies at low dielectric respo
frequency and solvation@17,19#. The former are given by
expressions such as Eq.~33!, involving the random local
zero frequency polarizability. The latter are also given
such expressions, but involving the local high frequen
electronic polarizability. This high frequency polarizabili
will have a far smaller dispersion than the zero frequen
polarizability. To a reasonable approximation, therefore,
dispersion of reorganization energy is about the same siz
the dispersion of solvation energy.

With Eq. ~33!, the distribution function forEp is esti-
mated as

P~Ep!5^d@Ep2Ep~$a r ,rPp%,ȳ!#&av

5E )
rPp,rÞ0

@da rP~a r !#d@Ep2Ep~$a r ,rPp%,ȳ!#.

~34!

Figure 7 illustrates this distribution computed for a few d
ferent primary system sizes for the case wherep150.5 and
p51.0 D. The results are obtained by 50 000 realizatio
Error estimates~not shown for clarity of the figure! gradually
go from one-fifth the size of the symbols in the peak reg
ys

, J
se

y
y

y
e
as

s.

n

to about three times the size of the symbols in the wings
the distribution. In the limit of a very large primary system
the distribution will tend to the exact one for this mode
Judging from the relative changes in going fromn54 to 6 to
8, it appears thatn58 is close to the infinite system limit
The d-function distribution, indicated by a vertical line wit
an arrow in Fig. 7, represents a dielectric continuum limit
the model. In this dielectric continuum limit, the outside d
electric medium is represented by a dielectric continu
whose dielectricȳ is given by our self-consistent calculation
From Eq.~33!, the solvation energyEp can be obtained by
settingr50 andr-50. This dielectric continuum prediction
gives Ep53.29 D2Å 23 without dispersion. In contrast, th
mean̂ Ep&, and root mean-square dispersion^(dEp)

2&1/2 pre-
dicted from the n58 distribution are 4.58 D2Å 23 and
0.39 D2Å 23, respectively. Thus, inhomogeneity of a diele
tric material can indeed significantly affect solvation and
organization energies.
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